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Abstract

After investigating the effect of the frequency of an external electrical stimulation on the chaotic dynamics of a single
FitzHugh–Nagumo (FHN) neuron, this paper derives both a sufficient and a necessary condition of the coupling coefficient for
self-synchronization of two interacting FHN neurons by using the Lyapunov function method and the largest transverse Lyapunov
exponent, respectively. Also, for the cases that self-synchronization is not achieved through the coupling coefficient, a feedback con-
trol law for synchronization using the Lyapunov method is investigated. The performance of the proposed control law is compared
with that of an existing one in the literature. Simulation results are provided.
© 2011 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Chaos as a complicated nonlinear phenomenon has attracted very considerable interest and attention over the
past three decades in many scientific disciplines including physics, chemistry, ecology, biology, and others. The
interest in chaotic systems lies in their complexity, unpredictable behavior and high sensitivity to initial conditions and
parameter variations. In biological systems, chaotic and other complex behaviors such as bifurcation, periodic, and
quasi-periodic oscillations have been observed in various experiments of current-stimulated excitable cells [9,19,26].
In 1952, Hodgkin and Huxley proposed a four-dimensional mathematical model that approximates the electrical
characteristics of excitable cells [22]. Since then, chaotic oscillations and routes to chaos that are observed in real
biological neurons have been successfully described quantitatively with the Hodgkin–Huxley model [2]. Based on the
Hodgkin–Huxley equations, various three-dimensional models of excitable cells that exhibit bursting behavior were

proposed [11,21,27,35], and chaotic bursting behavior as well as the bifurcation diagram structure of such cells have
been studied in [13,17,29]. A more reduced model consisting of two first-order differential equations was formulated
by FitzHugh [18], and its equivalent circuit was created by Nagumo et al. [30]. When the FitzHugh–Nagumo (FHN)
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ystem is space-clamped and subjected to a stimulating electrical current, a variety of complex dynamical behavior
uch as phase-locked limit cycles, quasi-periodicity, and chaos are observed [12,44]. Individual neurons can exhibit
rregular behavior, whereas ensembles of neurons might be synchronized in order to transmit biological information or
o produce regular and rhythmical activities [16]. The study of synchronization processes for populations of interacting
eurons is basic to the understanding of some key issues in neuroscience. Recently, many researchers have focused
n the synchronization of coupled neurons, which is one of the fundamental issues in understanding the neuronal
ehaviors in networks (see [3,10,14,15,31,36–39,45,47] and the references therein).

In the past years, the synchronization of coupled chaotic systems has been intensively studied by a large number of
uthors [5,7,33,34,40–42,49], and many complex synchronization phenomena such as riddled basin, riddling bifurca-
ion, blowout bifurcation, and on–off intermittency have been reported [4,32]. The conditions of the coupling strength
or synchronization, the influence of noise, and the effects of a parameter mismatch on the synchronization of coupled
haotic systems have been also investigated [40,50].

For the problem of synchronizing two coupled neurons, many studies have confirmed that when the intensity
f an internal noise exceeds a critical value, the self-synchronization can be achieved [10,31,37]. Other numer-
cal results [38,50] have shown that strong coupling can also synchronize a system of two coupled neurons.
lso, various methods using modern control theories have been proposed to synchronize two chaotic systems (see

3,8,14,15,25,28,38,39,43,45–47] and the references therein). Cornejo-Pérez and Femat [14] investigated the synchro-
ization of two noiseless Hodgkin–Huxley neurons using a modified feedback control law with a high-gain observer.
eng et al. [15] used a backstepping control law to synchronize two coupled chaotic FHN neurons under external

lectrical stimulation. The same chaotic neuron system could be also synchronized using an H∞ variable universe
daptive fuzzy control [47] or a nonlinear robust adaptive control [39]. In the work of Tian et al. [45], a linearizing
ontrol law in association with a dynamic uncertainty estimator was designed to synchronize two Hodgkin–Huxley
eurons exposed to external periodic stimulation and extremely low frequency electric field.

In the present paper, first, the dynamic behavior of a FHN neuron stimulated by an external electrical signal is
nvestigated. By introducing the bifurcation diagram and the largest Lyapunov exponent, the effect of the external
lectrical stimulation’s frequency on the chaotic behavior of the neuron is fully investigated. Second, by using the
yapunov function method and calculating the largest transverse Lyapunov exponent, respectively, a sufficient condition
nd a necessary condition of the coupling coefficient for achieving self-synchronization between two coupled chaotic
HN neurons are established. Third, for the cases that the coupling coefficient does not satisfy the self-synchronization
onditions, a new feedback control law (based on the Lyapunov method) that achieves synchronization of two chaotic
eurons is proposed. The proposed control law can be extended to the cases that the external electrical stimulations
pplied to each neuron are different. Our method, compared with the work in [15], provides a much improved control
erformance: With the proposed control law, synchronization was achieved at t ≈ 15 (dimensionless), whereas it was
chieved with the control law proposed in [15] at t > 100.

This paper is organized as follows. In Section 2, the dynamics of a single FHN neuron under various external
lectrical stimulations are investigated. In Section 3, a sufficient condition and a necessary condition of the coupling
oefficient for the achievement of global self-synchronization are analyzed. The design of a feedback control law for
ynchronization, when the coupling coefficient does not satisfy the self-synchronization conditions, is also addressed
n this section. Finally, conclusions are drawn in Section 4.

. Dynamics of a single FHN neuron

.1. Model description

The FHN model, a simplified version from the Hodgkin–Huxley model [18], is a genetic model for active membranes.
ts justification is based in the observed fact that the membrane voltage and the activation of sodium current vary in a
imilar time scale, whereas the inactivation of sodium current and the activation of potassium current change in much

lower time scale. The FHN neuron equations are

dx

dt
= x(x − 1)(1 − b1x) − y + s(t), (1a)
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dy

dt
= b2x, (1b)

where x represents the membrane voltage and y represents the recovery variable. It is noted that the equations are
rescaled ones from the actual membrane voltage V and the actual recovery variable W by the peak value of the active
potentials Vpeak (i.e., x = V/Vpeak, y = W/Vpeak). Also, b1 = Vpeak/Vth, where Vth is the threshold membrane voltage, and
b2 is a positive constant. The external electrical stimulation s(t) is given by

s(t) = a

2πf
cos 2πft, (2)

where a and f are dimensionless parameters presenting, respectively, the amplitude and the frequency of the applied
electrical stimulus. As the frequency or amplitude of the stimulation is changed, periodic or chaotic oscillations of the
membrane voltage are observed. The periodic oscillations are classified as m:n phase-locking rhythms, where m and n
are the number of actual spikes and the number of regularly timed stimuli realized in one response period, respectively
(therefore nT is the period of the response if T is the period of the stimulation). The 1:1 phase-locking rhythms mean
that the membrane voltages respond synchronously to the stimuli. Fig. 1 shows various dynamic behaviors of the FHN
neuron (1) stimulated by the external electrical stimulation in (2), in which the time series of the membrane voltages
x and the x–y phase portraits for some values of f and a are given.

2.2. Chaotic behavior

In order to investigate the chaotic behavior of (1), the bifurcation diagrams and the variation of the largest Lyapunov
exponents are explored. The bifurcation diagrams are constructed using a Poincaré section (�: x + 0.045 = 0 and
dy/dt > 0) in the phase space, which can capture all the spikes/orbits generated by (1). The largest Lyapunov exponents
are computed using the method described in [48]. For an n-dimensional continuous dynamic system, the largest
Lyapunov exponent is defined as

λmax = lim
t→+∞

1

t
log

δ(t)

δ(0)
, (3)

where δ(t) is the principal axis of the n-ellipsoid generated by an infinitesimal n-sphere of initial conditions. If
λmax > 0, the system is chaotic. Otherwise, the system follows a limit cycle or is quasi-periodic [1,48]. The fourth-order
Runge–Kutta algorithm is used to numerically integrate (1) with a diminishing step-size �t = 0.005. Here, we fix the
parameters as b1 = 10, b2 = 1.0, a = 0.1 and use the frequency f of the external electrical stimulation as a bifurcation
parameter.

Fig. 2 shows the bifurcation diagram (upper) and the corresponding variation of the largest Lyapunov exponent
(lower) of the periodically stimulated FHN neuron over the frequency range 0.06 < f < 0.17. As shown in Fig. 2, a rich
dynamic behavior is observed. For large frequencies (f > 0.1625), the neuron Exhibits 0:1 phase-locking rhythms. The
membrane voltages are suppressed entirely, leaving only sub-threshold oscillations. The 1:2 phase-locking rhythms
can be found for 0.078 < f < 0.095 and 0.131 < f < 0.1609. The neuron responds synchronously (1:1 phase-locking
rhythms) to the stimuli for f < 0.067 and 0.095 < f < 0.1245. It can also be seen from Fig. 2 that three chaotic regions
are found and they are denoted by (I), (II) and (III) sequentially. These chaotic regions are confirmed by the positive
values of the largest Lyapunov exponents (the lower part of Fig. 2). The magnification of the chaotic regions and
their corresponding largest Lyapunov exponent are depicted in Fig. 3. The chaotic region (I) appears in the middle
of 0:1 and 1:2 phase-locking rhythms, in which chaotic dynamics are developed via a sequence of period-doubling
bifurcations for decreasing f as shown in Fig. 3(a). At each period-doubling bifurcation point, the largest Lyapunov
exponent approaches to zero from negative value (as shown in the lower part of Fig. 3(a)). It is noted that there
is a short interval of the stable periodic oscillation in between f = 0.1613 and f = 0.16149. Around f = 0.1613, the
size of the chaotic attractor increase dramatically. This marks the transition to spiking dynamics through a homo-
clinic bifurcation [6]. These chaotic dynamics end at f = 0.1609 with the appearance of 1:2 phase-locking rhythms

via a saddle-node bifurcation. At the saddle-node bifurcation point, the largest Lyapunov exponent changes sud-
denly from a positive value to a negative one. The largest chaotic region (region (II)) is observed in the frequency
range 0.1245 < f < 0.1311 as shown in Fig. 3(b). It is obvious that we have positive Lyapunov exponents for the
chaotic state (the lower part of Fig. 3(b)). Around f = 0.1311, a sudden change of the largest Lyapunov exponent



L.H. Nguyen, K.-S. Hong / Mathematics and Computers in Simulation 82 (2011) 590–603 593

100 150 200 250 300 350 400
-0.5

0

0.5

1

t

x

-0.5 0 0.5 1
-1

0

1

2

3

x

y

(a) 1:1 phase-locking rhythm for f = 0.06 and a = 0.1. 
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(b) 2:3 phase-locking rhythm for f = 0.076 and a = 0.1. 
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(c) 1:2 phase-locking rhythm for f = 0.08 and a = 0.1. 
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(d) 1:5 phase-locking rhythm for f = 0.129 and a = 0.081. 

Fig. 1. Diverse behaviors of (1)–(2) with different values of f and a (b1 = 10, b2 = 1.0). All above figures were obtained after ignoring an initial
transient period of 100 time units. (a) 1:1 phase-locking rhythm for f = 0.06 and a = 0.1. (b) 2:3 phase-locking rhythm for f = 0.076 and a = 0.1. (c)
1:2 phase-locking rhythm for f = 0.08 and a = 0.1. (d) 1:5 phase-locking rhythm for f = 0.129 and a = 0.081. (e) 0:1 phase-locking rhythm for f = 0.17
and a = 0.081. (f) Chaotic dynamics for f = 0.129 and a = 0.1.
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(e) 0:1 phase-locking rhythm for f = 0.17 and a = 0.081. 
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(f) Chaotic dynamics for f = 0.129 and a = 0.1. 

Fig. 1. (Continued ).
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Fig. 2. The bifurcation diagram (upper) and the corresponding variation of the largest Lyapunov exponent (lower) of (1)–(2) over the frequency
range, 0.06 < f < 0.17, with a = 0.1, b1 = 10, and b2 = 1.0.
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(a) Region (I) in Fig. 2, 0.160 < f < 0.163. 
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(b) Region (II) in Fig. 2, 0.124 < f < 0.132. 
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(c) Region (III) in Fig. 2, 0.065 < f < 0.080. 

Fig. 3. Three regional details from Fig. 2: bifurcation diagrams (upper) and largest Lyapunov exponents (lower).
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rom positive to negative takes places, the system dynamics change from chaotic to stable periodic via a saddle-node
ifurcation. Finally, the last chaotic region (region (III)) occurs between 1:2 and 1:1 phase-locking rhythms for small
alues of f (Fig. 3(c)). In this region, we find a sequence of n:(n + 1) period-adding cascade to chaos started with
= 1. As f is decreased further to a critical value (∼0.067), the chaotic state turns into a stable period spiking (1:1

hase-locking rhythm) through a saddle-node bifurcation. Correspondingly, the largest Lyapunov exponent becomes
egative.
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3. Synchronization of two coupled FHN neurons

3.1. Conditions for self-synchronization

In this subsection, the conditions for self-synchronization of two coupled FHN neurons are investigated. Based on
(1), two coupled FHN neurons are modeled as

dx1

dt
= x1(x1 − 1)(1 − b1x1) − y1 − g(x1 − x2) + s(t), (4a)

dy1

dt
= b2x1, (4b)

dx2

dt
= x2(x2 − 1)(1 − b1x2) − y2 − g(x2 − x1) + s(t), (4c)

dy2

dt
= b2x2, (4d)

where xi, yi (i = 1, 2) are the state variables and g is the positive coupling coefficient.

Definition. The two coupled FHN neurons (4a)–(4d) are said to be globally asymptotically synchronized if, for all
initial conditions x1(0), x2(0) and y1(0), y2(0), lim

t→∞||x1(t) − x2(t)|| = 0 and lim
t→∞||y1(t) − y2(t)|| = 0.

3.1.1. Sufficient condition for self-synchronization
Let e1 = x2–x1 and e2 = y2–y1 be the error signals between the states of the coupled system (4). Then the following

error dynamics are derived.

ė1 = [−1 − 2g + (1 + b1)(x1 + x2) − b1(x2
1 + x1x2 + x2

2)]e1 − e2, (5)

ė2 = b2e1. (6)

From the definition of the global asymptotic synchronization, it is sufficient for synchronization if the trivial solution
of the error dynamics (5) and (6) is globally asymptotically stable.

Theorem. Let the coupling coefficient g satisfy the following condition:

g >
M[2(1 + b1) + 3Mb1] − 1

2
, (7)

where M is the upper bound of the absolute value of the membrane voltage. Then, for every initial condition (x1(0),
x2(0), y1(0), y2(0)), the two coupled FHN neurons are globally uniformly asymptotically synchronized as t→ + ∞.

Proof. Note first that (0, 0) is the only equilibrium point of (5) and (6). Choose a Lyapunov function candidate as

E1(e1, e2) = b2αe2
1 + αe2

2, (8)

where α is a positive constant. The time derivative of E1(e1, e2) along the trajectories of (5) and (6) becomes

Ė1(e1, e2) = 2b2αe1ė1 + 2αe2ė2 = 2α[−1 − 2g + (1 + b1)(x1 + x2) − b1(x2
1 + x1x2 + x2

2)]e2
1. (9)

Since the system (4) has bounded trajectories [24], let the bound be M (i.e., |x1| ≤ M and |x2| ≤ M). Thus

Ė1(e1, e2) ≤ −2α{1 + 2g − M[2(1 + b1) + 3Mb1]}e2
1. (10)

˙ ˙
Therefore, if 1 + 2g − M[2(1 + b1) + 3Mb1] > 0, E1(e1, e2) < 0. Let Γ = {(e1, e2) : E1(e1, e2) = 0}. From (9), Γ = {(e1,
e2): e1 = 0}. In the invariant set Γ , ė1 = 0 holds. This again implies, by way of (5), that e2 = 0. Therefore (0, 0) is the
only solution in Γ . By LaSalle’s theorem for periodic systems [23], we conclude that the origin is globally uniformly
asymptotically stable. The proof is completed. �
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Fig. 4. λ − g diagram of (4): Synchronization occurs if g becomes greater than 0.07 (b1 = 10, b2 = 1.0, a = 0.1, and f = 0.129).

The above theorem provides only a sufficient condition but not a necessary condition for global self-synchronization
f two coupled FHN neurons. In other words, if the coupling coefficient does not satisfy (7), it does not mean that
wo coupled FHN neurons cannot achieve self-synchronization. In fact, numerical simulations revealed that there exist
oupling coefficients that, whereas not satisfying the above sufficient condition, are adequate for synchronization of
wo coupled FHN neurons (see Fig. 6).

.1.2. Necessary condition for self-synchronization
Let us introduce a new variable z = t. Then, the system of two coupled FHN neurons in (4) can be expressed in the

ollowing form:

v̇1 = f (v1) + C(v1 − v2), (11a)

v̇2 = f (v2) + C(v2 − v1), (11b)

here

vi =

⎡
⎢⎣

xi

yi

z

⎤
⎥⎦ , f (vi) =

⎡
⎢⎣

xi(xi − 1)(1 − b1xi) − yi + s(z)

b2xi

1

⎤
⎥⎦ , i = 1, 2,

nd

C =

⎡
⎢⎣

g 0 0

0 0 0

0 0 0

⎤
⎥⎦ .

Define the synchronization manifold as v1(t) = v2(t) = η(t). By introducing a new coordinate in the transverse direction
o the synchronization manifold, ξ(t) = v2(t) − v1(t), the linearized equation of the transversal perturbation is obtained
s follows [33,34,50].

δξ̇ = [Df (η(t)) + 2C]δξ, (12)

here

Df (η) =

⎡
⎢⎣

−3b1η
2
x + 2(b1 + 1)ηx − 1 −1 −a sin 2πfηz

b2 0 0

0 0 0

⎤
⎥⎦ ,

nd Df(η) denotes the Jacobian matrix of the individual neurons evaluated along the solution η(t) = [ηx(t), ηy(t), ηz(t)]

n the synchronization manifold.

In this paper, we adopt the necessary condition for synchronization of (4) from the literature [33,34,50], which
equires that the largest transverse Lyapunov exponent is negative. So, by computing the largest Lyapunov exponent of
12), the necessity for synchronization of (4) can be verified. Fig. 4 shows the largest transverse Lyapunov exponent λ
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Fig. 5. Non-synchronized dynamics of (4) with g = 0.05: (a) x1–x2 phase portrait, (b) synchronization errors e1 = x2 − x1 and e2 = y2 − y1.

as a function of the coupling coefficient g. Here, the parameters are chosen as b1 = 10, b2 = 1.0, a = 0.1, and f = 0.129.
As shown in Fig. 4, the synchronization threshold value is about g = 0.07 and, above this value, a self-synchronization
of two coupled FHN neurons can occur.

It is important to note that the negativity of the largest transverse Lyapunov exponent is not a sufficient condition
for the stability of the synchronized state. The reason is that there can be unstable invariant sets (e.g., fixed points,
periodic orbits) with positive largest transverse Lyapunov exponents in the stable synchronization manifold. Therefore,
as trajectories come near these invariant sets they can be rebelled from the synchronization manifold [20]. Some studies
[5,20] have shown that the desynchronized state can appear, even when the largest transverse Lyapunov exponent is
negative.

To demonstrate the effectiveness of the sufficient and the necessary conditions as well as to provide a comparison
between these conditions, we simulate the coupled system (4) for different values of the coupling coefficient. Here, the
parameters are chosen as b1 = 10, b2 = 1.0, a = 0.1, and f = 0.129. The initial condition is (x1(0), y1(0), x2(0), y2(0)) = (0.1,
0.0, −0.1, 0.1). For g = 0.05, both conditions are not satisfied. Fig. 5 reveals that the self-synchronization cannot occur
between two coupled FHN neurons. For g = 2.0, the sufficient condition is still not satisfied but the necessary condition
holds in this case (� = −0.2321). It can be seen from Fig. 6 that the self-synchronization between two coupled FHN
neurons can be achieved even the sufficient condition for self-synchronization does not hold.

3.2. Synchronization via a feedback control

In this section, for the case that the conditions for self-synchronization do not satisfy, a feedback control law that
synchronizes the two coupled FHN neurons is developed. First, let us decompose the first terms in the right hand sides
of (4a) and (4c) into two parts (linear and nonlinear) as follows.

(I)

⎧⎪⎨
⎪⎩

dx1

dt
= −x1 − y1 − g(x1 − x2) + (b1 + 1)x2

1 − b1x
3
1 + s(t),

dy1

dt
= b2x1,

(13)

(II)

⎧⎪⎨
⎪⎩

dx2

dt
= −x2 − y2 − g(x2 − x1) + (b1 + 1)x2

2 − b1x
3
2 + s(t) + u,

dy2

dt
= b2x2.

(14)

(I) and (II) are considered as the drive and response systems, respectively. The aim is to design the control u in (14),
so that (I) and (II) are synchronized. By defining the error signals as e1 = x2 − x1 and e2 = y2 − y1, the error dynamics
becomes
ė1 = −e1 − e2 − 2ge1 + (b1 + 1)(x2 + x1)e1 − b1(x2
2 + x1x2 + x2

1)e1 + u, (15)

ė2 = b2e1. (16)
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ig. 6. Synchronization occurs when the coupling coefficient gets large (g = 2.0): (a) x1–x2 phase portrait, (b) synchronization errors e1 = x2 − x1

nd e2 = y2 − y1.

e introduce a new term to denote the nonlinear term in (15) as

h(x1, x2, e1) = (b1 + 1)(x2 + x1)e1 − b1(x2
2 + x1x2 + x2

1)e1. (17)

hen (15) and (16) are reduced to

ė1 = −e1 − e2 − 2ge1 + h(x1, x2, e1) + u, (18)

ė2 = b2e1. (19)

he synchronization problem is replaced by finding a suitable control law u such that the asymptotical stability of the
rror dynamics of (18) and (19) at the origin is guaranteed.

Choose a Lyapunov function candidate as follows:

E2(e1, e2) = e2
1 + e2

2. (20)

he derivative of E2(e1, e2) is given by

Ė2(e1, e2) = 2e1ė1 + 2e2ė2 = −2(1 + 2g)e2
1 + 2[h(x1, x2, e1)e1 + ue1 − e1e2 + b2e1e2]. (21)

et the control law be

u = −h(x1, x2, e1) − (b2 − 1)e2. (22)

he substitution of (22) into (21) yields

Ė2(e1, e2) = −2(1 + 2g)e2
1 ≤ 0. (23)

ote that Ė2(e1, e2) = 0 if e1 = 0. However, from (22) and (18), it is also noted that e2 ≡ 0 if e1 ≡ 0. Therefore, by
aSalle’s theorem [23], we conclude that the origin is globally asymptotically stable. Hence, with the control law (22),

he two coupled FHN neurons are globally asymptotically synchronized.
Finally, by substituting (17) into (22), the control law is rewritten as

u = −[(b1 + 1)(x2 + x1)e1 − b1(x2
2 + x1x2 + x2

1)e1] − (b2 − 1)e2. (24)

o demonstrate the effectiveness of the proposed control law, numerical simulations are performed. Here, we choose
he coupling coefficient g = 0.05 so that self-synchronization does not occur (see Fig. 5). The other parameters chosen
re the same as before. Fig. 7(a) illustrates the x1–x2 phase portrait of the coupled neurons, which shows an immediate
ynchronization. Fig. 7(b) shows the convergence of the synchronization errors e1 = x2 − x1 and e2 = y2 − y1 to zero.
emark 1. When the external stimulations applied to two neurons are different, say s1(t) to the drive system (I) and
2(t) to the response system (II), the control law is modified as follows:

u = −[(b1 + 1)(x2 + x1)e1 − b1(x2
2 + x1x2 + x2

1)e1] − (b2 − 1)e2 − [s2(t) − s1(t)]. (25)
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Fig. 7. Synchronization of (13) and (14) with the proposed control law (24): (a) x1–x2 phase portrait, (b) synchronization errors e1 = x2 − x1 and
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To demonstrate this case, the following scenarios for synchronization are pursued:

Case (1) Frequencies are different: We choose f1 = 0.135 for the drive neuron and f2 = 0.129 for the response neuron.
The amplitudes of two stimulations are the same, that is, a1 = a2 = 0.1. For these parameters, the drive neuron exhibits
a periodic behavior while the response neuron exhibits a chaotic behavior. The time responses of the synchronization
errors and the membrane voltage of the response neuron, before and after applying the control law in (25), are shown
in Fig. 8. The simulation results show that the synchronization errors converge asymptotically to zero within a finite
time after the application of the control at time t = 200 (see Fig. 8(a)). Additionally, at the time where the control law
was applied, the membrane voltage of the response neuron switches from the chaotic behavior to a periodic behavior
so that it follows well the membrane voltage of the drive neuron, as shown in Fig. 8(b).

Case (2) Amplitudes are different: We choose a1 = 0.07851 for the drive neuron and a2 = 0.15 for the response
neuron. The frequencies of two stimulations are the same, that is, f1 = f2 = 0.129. For these parameters, the drive neuron
exhibits a chaotic behavior while the response neuron exhibits a periodic behavior. Fig. 9(a) shows the synchronization
between two coupled neurons. The transition from the periodic behavior to a chaotic behavior of the response neuron’s
membrane voltage at the time of applying the control law in (25) is shown in Fig. 9(b).

Remark 2. The control law proposed in [15] (Eq. (14)) is given by

u = −[x2(x2 − 1)(1 − b1x2) − x1(x1 − 1)(1 − b1x1)] − (b2 − 1)e2. (26)
We applied this control law to our system with exactly the same parameters and initial conditions. The comparison
results are shown in Fig. 10. Clearly, our method provides much better synchronization performance. With our control
law, the synchronization errors converged to zero after t ≈ 15 (solid line), whereas t > 100 was spent with the control
law proposed in [15] (dashed line).
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Fig. 8. Synchronization of (13) and (14) using (25) with two different frequencies (f1 = 0.135 for the drive neuron and f2 = 0.129 for the response
neuron) at time t = 200: (a) membrane voltages and (b) synchronization errors.
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Fig. 9. Synchronization of (13) and (14) using (25) with two different amplitudes (a1 = 0.07851 for the drive neuron and a2 = 0.15 for the response
neuron) at time t = 200: (a) synchronization errors and (b) membrane voltages.
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. Conclusions

In this study we addressed the problem of synchronization of two chaotic FHN neurons coupled by a coupling
oefficient. The synchronized state can be achieved by either a strong coupling coefficient or by a proper external control
ignal. In particular, we first investigated the dynamic behaviors of a single FHN neuron under various external electrical
timulations. Through simulations, three chaotic regions were specified by varying the frequency of the external
lectrical stimulation. Second, we established one sufficient condition and one necessary condition of the coupling
oefficient for achieving self-synchronization of two coupled chaotic neurons. Also, for the case that the conditions
or self-synchronization are not satisfied, we formulated a new Lyapunov function-based control law that guarantees
ynchronization. Neuronal synchronization, in enabling coordination between different areas in the brain, plays an
mportant role in neural signal transmission. The present study can provide a further understanding of synchronization
henomena in a pair of biological neurons. Especially, the proposed synchronization algorithm can be a step toward
he development of a synchronization scheme for a network of neurons.
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